# Posters

## Poster sessions

- Poster sessions will be held at the Room B-1 and Room B-2 on the second floor of the Kyoto
International Conference Center.

- Maximum poster size is A0.

- Due to the limited space, no poster can be displayed over the two poster sessions.

- Schedules of the poster sessions together with poster attach/detach times for each session are as
follows:

Attach | Presentation | Detach | |
---|---|---|---|

Poster Session 1 | From Oct. 31st, 1pm | Oct. 31st, 4pm-6pm | By Nov. 1st, 1pm |

Poster Session 2 | From Nov. 1st, 1pm | Nov. 1st, 2pm-4pm | By Nov. 2nd, 2pm |

NOTICE: Posters left on the boards until 1pm of the next day of the presentation will be removed by organizers.

## Poster Session 1 (October 31st, 4pm-6pm)

### T01

A high-throughput cryogenic probestation for quantum dot characterization

Toni Berger^{1}

^{1}University of Basel

### T02

A Hybrid Superconducting-Semiconducting Quantum Dot in Planar Germanium

William Iain Leonard Lawrie^{1}

^{1}Center for Quantum Devices, Niels Bohr Institute, University of
Copenhagen, Denmark

### T03

Sparse 2d Spin Qubit Architecture with Favourable Compilation Overhead

Normann Michael Mertig^{1}

^{1}Hitachi Cambridge Laboratory, Hitachi Europe Ltd.

### T04

The SpinBus Architecture: Scaling Spin Qubits with Electron Shuttling

Alexander Willmes^{1}

^{1}JARA-FIT

### T05

Real-time two-axis control of spin qubits

Fabrizio Berritta^{1}

^{1}Niels Bohr Institute, University of Copenhagen

### T06

Pulse Shaping and Composite Pulses for Single-Qubit Gates in SiGe

Patrick Bütler^{1}

^{1}RIKEN, ^{2}ETH Zurich

### T07

Towards optically addressable CMOS compatible spin qubits

Pim van den Berg^{1}

^{1}University of Twente

### T08

Optimal Control of a SiGe-Quantum Bus for Coherent Electron Shuttling in Scalable Quantum Computing Architectures

Markus Kantner^{1}

^{1}Weierstrass Institute for Applied Analysis and Stochastics (WIAS)

### T09

Site-controlled Ge hut wire-based multiple quantum dots with a charge sensor

Jin Leng^{1}

^{1}University of Science and Technology of China (USTC).

### T10

Direct Bandgap All-Group IV System for Heavy-Hole EDSR

Nicolas Rotaru Rotaru^{1}

^{1}École Polytechnique de Montréal

### T11

A tunable double quantum dot system in a silicon field-effect transistor

TSUNG-YEH YANG^{1}

^{1}Hitachi Europe Ltd.

### T12

A 2x2 quantum dot array in silicon with tuneable pairwise interdot coupling

Wee Han Lim^{1,2}

^{1}School of Electrical Engineering and Telecommunications, University of New
South Wales, NSW 2052, Sydney, NSW, Australia, ^{2}Diraq, Sydney, NSW,
Australia

### T13

Hamiltonian Phase Error in Resonantly Driven CNOT Gate Above the Fault-Tolerant Threshold

Wu Yi-Hsien^{1,2}

^{1}National Taiwan University, ^{2}RIKEN Center for Emergent
Condensed Matter Science

### T14

Resistive interconnects for silicon spin qubits

Christopher David White^{1}

^{1}Joint Center for Quantum Information and Computer Science, NIST/University
of Maryland

### T15

Single-electron occupation in quantum dot arrays at selectable plunger gate voltage

Marcel Meyer^{1}

^{1}QuTech - Delft University of Technology

### T16

Simulating a dynamical quantum phase transition in a silicon spin qubit array

Irene Fernandez de Fuentes^{1}

^{1}QuTech and the Kavli Institute of Nanoscience, Delft University of
Technology, 2600 GA Delft, The Netherlands

### T17

Quantum sensing using Pauli spin blockade via deep impurity levels in Si up to room temperature

Yoshisuke Ban^{1}

^{1}RIKEN

### T18

Charge-induced energy shift of a single spin qubit under magnetic-field gradient

Takashi Kobayashi^{1}

^{1}RIKEN Center for Quantum Computing

### T19

Efficient workflows for technology computer-aided design of spin qubits in gated double quantum dots

Felix Beaudoin^{1}

^{1}Nanoacademic Technologies Inc. Montréal, Québec, Canada

### T20

Probing two-qubit capacitive interactions beyond bilinear regime using dual Hamiltonian parameter estimation

Jonginn Yun^{1}

^{1}Seoul National University

### T21

Enhancing coherent control of electron spin qubits via readout error mitigation

Hanseo Sohn^{1}

^{1}Seoul National University

### T22

Atomic Precision Engineering of Electron and Nuclear Spin Qubits
in Isotopically Purified ^{28}Si

A F M Saiful Haque Misha^{1,2,3}

^{1}Silicon Quantum Computing Pty. Ltd., UNSW Sydney, 2052, Australia,
^{2}Centre of Excellence for Quantum Computation and Communication Technology,
Sydney, Australia, ^{3}University of New South Wales, Sydney, Australia

### T23

RF Power Optimization for Charge Noise Characterization of a Silicon Quantum Dot

Yuto Arakawa^{1}

^{1}Tokyo Institute of Technology

### T24

Withdrawn

### T25

Single spin qubit geometric gate in a ^{28}Si-MOS quantum
dot

RongLong Ma^{1}

^{1}Univ. Sci. Technol. China

### T26

Two-electron spectrum and two-spin relaxation in a Si quantum dot

Xuedong Hu^{1}

^{1}University at Buffalo

### T27

Modeling the electronic structure of jellybean quantum dots with >100 electrons

MengKe Feng^{1}

^{1}University of New South Wales

### T28

Composite gates for a continue set of two-qubit gates

Hai-Ou LI^{1}

^{1}University of Science and Technology of China

### T29

Many-electron tunnelling in polysilicon-gated quantum dots using industrial manufacturing

Mario Simoni^{1,2}

^{1}University of Twente, ^{2}Politecnico di Torino

### T30

Enhancing two-qubit fidelities in silicon using Gate Set Tomography

Paul Steinacker^{1}

^{1}UNSW

### T31

Microwave-dressed spin qubits in silicon using a global field

Ensar Vahapoglu^{1,2}

^{1}UNSW Sydney, ^{2}Diraq Pty Ltd

### T32

A SWAP Gate for Spin Qubits in Silicon

Ming Ni^{1}

^{1}University of Science and Technology of China

### T33

Withdrawn

### T34

Identifying Pauli spin blockade using deep learning

Jonas Schuff^{1}

^{1}University of Oxford

### T35

Anisotropy of single spin qubit in Si-MOS quantum dot

NING CHU^{1}

^{1}University of science and technology of China

### T36

Additional High-Pressure Hydrogen Annealing Reducing Low-Frequency Noise in Cryogenic MOS Devices

Shunsuke Shitakata^{1,2}

^{1}National Institute of Advanced Industrial Science and Technology,
^{2}Keio Univ.

### T37

A scalable FDSOI spin qubits platform for quantum computing applications

Heimanu Niebojewski^{1}

^{1}CEA-Leti

### T38

Si/SiGe spin qubits manufactured with industrial techniques

Thomas Koch^{1}

^{1}Karlsruhe Institute of Technology (KIT)

### T39

Enhancing the microfabrication of prototype SiMOS device stocks.

Leon Luo^{1}

^{1}The University of New South Wales, Sydney, New South Wales,
Australia

### T40

Scanning NV magnetometry of focused-electron-beam-grown cobalt nanomagnets for spin qubit control

Liza Zaper^{1,2}

^{1}University of Basel, ^{2}Qnami AG

### T41

Towards Deterministic Doping of few-dopant quantum devices

James Hugh Gervase Owen^{1}

^{1}Zyvex Labs

### T42

Si & Ge heterostructures for quantum dot spin qubits

Davide Degli Esposti^{1}

^{1}QuTech/TU Delft

### T43

Coupling conduction-band valleys in modulated Si/SiGe heterostructures via shear strain

Benjamin David Woods^{1}

^{1}University of Wisconsin-Madison

### T44

Magnetic Dipolar Coupling in Silicon-Based Multi-Nuclear Spin Registers

Ian Daniel Thorvaldson^{1,2}

^{1}Silicon Quantum Computing Pty. Ltd., ^{2}Centre of Excellence for
Quantum Computation and Communication Technology

### T45

Understanding transport through many-body states of dopant arrays and jelly-bean quantum dots

Garnett W Bryant^{1,2}

^{1}National Institute of Standards and Technology, ^{2}University of
Maryland

### T46

Capturing valley, orbital and spin characteristics in dopants in Group IV semiconductors using tight-binding

Abu Mohammad Saffat-Ee Huq^{1,2}

^{1}School of Physics, University of New South Wales, ^{2}Silicon
Quantum Computing

### T47

Quantum-enhanced machine learning using phosphorus-doped silicon quantum dots

Samuel Arthur Sutherland^{1,2,3,4}

^{1}Silicon Quantum Computing, ^{2}University of New South Wales,
^{3}Sydney Quantum Academy, ^{4} Centre of Excellence for Quantum
Computation and Communication Technology

### T48

Nagaoka ferromagnetism in 3x3 dopant arrays and beyond, a simple test case for solid-state quantum simulators

Yan Li^{1,2}

^{1}University of Maryland, ^{2}National Institute of Standards and
Technology

### T49

Improved placement precision of donor spin qubits in silicon using molecule ion implantation

Danielle Holmes^{1}

^{1}UNSW Sydney

### T50

Ultrafast Switch Spin Qubit-Microwave Photon Coupling via Spin Valve

Fangge Li^{1}

^{1}CAS Key Laboratory of Quantum Information, University of Science and
Technology of China

### T51

Purcell enhanced single T centres in silicon nanophotonic cavities

Camille Bowness^{1,2}

^{1}Simon Fraser University, ^{2}Photonic Inc

### T52

On-chip high kinetic inductance film LC filters modeled with a distributed scattering circuit

Yongqiang Xu^{1}

^{1}University of Science and Technology of China

### T53

A Tunable Spin-Photon Coupler for Quantum State Transfer

Ranran Cai^{1}

^{1}University of Science and Technology of China

### T54

Gate reflectometry measurements on industrial CMOS devices using superconducting spiral inductors

Joffrey Rivard^{1}

^{1}Université de Sherbrooke

### T55

Capacitive crosstalk in gate-based dispersive sensing of spin qubits

Eoin Gerard Kelly^{1}

^{1}IBM Research Europe - Zurich

### T56

Dispersive cascade readout of spins

Ross Cho Chun Leon^{1}

^{1}Quantum Motion

### T57

Gate-Dispersive Readout of a Ge/Si Core-Shell Nanowire Quantum Dot at Perfect Impedance Matching

Rafael Sebastian Eggli^{1}

^{1}University of Basel, Switzerland

### T58

Gate-based readout on planar MOS devices

Frederic Xeno Schlattner^{1,2}

^{1}University College London, ^{2}Quantum Motion

### T59

High-fidelity sub-microsecond single-shot electron spin readout above 3.5 K

Helen Geng^{1,2}

^{1}UNSW, ^{2}Silicon Quantum Computing

### T60

Improved Single-Shot Qubit Readout Using Twin RF-SET Charge Correlations

Santiago Serrano^{1}

^{1}School of Electrical Engineering and Telecommunications, The University of
New South Wales, Sydney, NSW 2052, Australia

### T61

Single-layer-gate defined quantum dots in Ge-SiGe heterostructures

Mukhlasur Tanvir^{1,2}

^{1}ECE, University of British Columbia, Canada, ^{2}SBQMI, University
of British Columbia, Canada

### T62

Towards quantum computing with hole spin qubits

Patrick Harvey-Collard^{1}

^{1}IBM Research Europe - Zurich, Switzerland

### T63

Acceptor-based qubit in silicon with tunable strain

Peihao Huang^{1}

^{1}Southern University of Science and Technology

### T64

Phase driving hole spin qubits in a silicon fin field-effect transistor

Simon Geyer^{1}

^{1}University of Basel

### T65

Spin driving and few-hole operation of a planar silicon double quantum dot in a 300 mm CMOS process

Isaac Vorreiter^{1}

^{1}University of New South Wales

### T66

Coupling of hole double quantum dots in planar germanium to microwave cavity

Zonghu Li^{1}

^{1}University of Science and Technology of China

### T67

High-performance Silicon-based Quantum Converter between Microwave and Optical Photons

Mohammad Khalifa^{1,2}

^{1}Department of Electrical and Computer Engineering, University of British
Columbia, ^{2}Stewart Blusson Quantum Matter Institute, University of British
Columbia

### T68

Rolling qubits like dice

Henry Yang^{1,2}

^{1}UNSW Sydney, ^{2}Diraq

### T69

Characterizing non-Markovian Quantum Processes by Fast Bayesian Tomography

Rocky Yue Su^{1}

^{1}University of New South Wales, Sydney

### T70

Millikelvin CryoCMOS Control of Silicon Qubits

Samuel K Bartee^{1}

^{1}University of Sydney

### T71

Co-Simulation and Optimization of Semiconductor Spin Qubits with Cryogenic Integrated Electronics

Lammert Duipmans^{1}

^{1}Central Institute of Engineering, Electronics and Analytics – Electronic
Systems (ZEA-2), Forschungszentrum Jülich GmbH

### T72

Hierarchical Cryogenic Control System for 128-Shuttling-Qubit Si Quantum Computer

Yusuke Kanno^{1}

^{1}Hitachi Ltd.

### T73

Measurement of classical electronics heating a local quantum dot thermometer in silicon

Mathieu de Kruijf^{1,2}

^{1}Quantum Motion, 9 Sterling Way, London, N7 9HJ, United Kingdom,
^{2}London Centre for Nanotechnology, University College London, 17-19 Gordon
Street, London WC1H 0AH, United Kingdom

### T74

Withdrawn

### T75

CMOS on-chip thermometry at deep cryogenic temperatures

Thomas Hugh Swift^{1,2}

^{1}University College London, ^{2}Quantum Motion

### T76

Coherent control of a 4 singlet-triplet-qubit quantum processor in a germanium quantum dot ladder

Xin Zhang^{1}

^{1}QuTech and Kavli Institute of Nanoscience, Delft University of Technology,
2600 GA Delft, The Netherlands

### T77

3D architecture for high-density silicon qubits by vertically stacked layers and common electrodes

Daiki Futagi^{1}

^{1}IIS, The Univ of Tokyo.

### T78

A 2x2 Quantum Processor in ^{28}Si/SiGe

Florian Unseld^{1}

^{1}QuTech and the Kavli Institute of Nanoscience, Delft University of
Technology

### T79

Towards a Scalable Semiconductor Quantum Computing

Hideaki Yuta^{1}

^{1}SANKEN, Osaka University

### T80

Scaling Si/SiGe Quantum Dots to a 2D Array with Controllable Interdot Tunnel Couplings

Ning Wang^{1}

^{1}University of Science and Technology of China, China

## Poster Session 2 (November 1st, 2pm-4pm)

### W01

Cryogenic Electronics for Advanced Spin Qubit Experiments

Fabio Ansaloni^{1}

^{1}Quantum Machines

### W02

Photocurrent imaging for efficient initialization of electron spins in silicon

Hassan Jamal Latief^{1}

^{1}Centre of Excellence for Quantum Computation and Communication
Technology

### W03

Stable floating-gate control of Si qubit devices with cryoCMOS circuits

Ruoyu Li^{1}

^{1}Imec, Leuven, Belgium

### W04

Si/SiGe QuBus for single electron information-processing with memory and micron-scale connectivity

Ran Xue^{1}

^{1}JARA-FIT Institute for Quantum Information, Forschungszentrum Jülich GmbH
and RWTH Aachen University, Aachen Germany

### W05

Exciton transport in a 2x4 Ge quantum dot ladder device

Daniel Jirovec^{1}

^{1}QuTech and Kavli Institute of Nanoscience, Delft University of Technology,
2600 GA Delft, The Netherlands

### W06

Feasibility of implementing surface and Bacon-Shor codes with two different spin qubit encodings

Chien-Yuan Chang^{1,2}

^{1}RIKEN Center for Quantum Computing, ^{2}National Tsing Hua
University

### W07

Withdrawn

### W08

High-speed and low-variability operation of silicon spin qubits employing buried nanomagnets

Shota Iizuka^{1}

^{1}National Institute of Advanced Industrial Science and Technology
(AIST)

### W09

Simulations of 1/f charge and spin splitting noise in Si/SiGe quantum dots

Marcin Kepa^{1,2}

^{1}Center for Quantum Devices, Niels Bohr Institute, ^{2}Institute of
Physics, Polish Academy of Sciences

### W10

Ambipolar operation for electron sensing towards scalable Si quantum dot array

Noriyuki Lee^{1}

^{1}Hitachi, Ltd.

### W11

Common Mode Control of Confinement in FDX22 Quantum Dots - Simulation Results and Experimental Validation

Andrii Sokolov^{1}

^{1}Equal1 Laboratories Ireland

### W12

High-fidelity and robust multi-qubit quantum gates for quantum-dot spin qubits in silicon

Hsi-Sheng GOAN^{1}

^{1}National Taiwan University

### W13

Towards quantum simulation of spin wave modes in quantum dot arrays

Tzu-Kan Hsiao^{1}

^{1}National Tsing Hua University, Taiwan

### W14

Towards mediated exchange in silicon

Sofia Marjatta Patomäki^{1,2}

^{1}University College London, ^{2}Quantum Motion Technologies

### W15

Scaling out of the plane: Controlling quantum dots in a Ge/SiGe double quantum well

Hanifa Tidjani^{1}

^{1}QuTech and Kavli Institute of Nanoscience, Delft University of
Technology

### W16

Active suppression of low-frequency exchange noise in controlled-phase gate for Si/SiGe spin qubits

Takashi Nakajima^{1}

^{1}RIKEN

### W17

Characterization of a Flip-Chip Interposer through Photon-Assisted Tunneling in a Double Quantum Dot

Ik Kyeong Jin^{1}

^{1}RIKEN Center for Emergent Condensed Matter Science, Wako, Japan

### W18

Nuclear spin noise in ^{nat}Si/SiGe spin qubits

Juan Sebastian Rojas-Arias^{1}

^{1}RIKEN, RQC

### W19

Robust, high fidelity CZ gates in quantum dot-resonator architectures via sideband transition

Guangzhao Yang^{1}

^{1}School of Physical and Mathematical Sciences, Nanyang Technological
University

### W20

Fabrication of Si/SiGe quantum dot spin qubit device and its electric control

Jaemin Park^{1}

^{1}Seoul National University

### W21

Investigation of exchange coupling between next-nearest neighbor
^{28}Si/SiGe spin qubits

Hyeongyu Jang^{1}

^{1}Seoul National University

### W22

Five and three quantum dot systems as apparatuses for measuring energy-levels

Tetsufumi Tanamoto^{1}

^{1}Teikyo Univ

### W23

Exchange control in MOS quantum dots made on a 300mm process measured using an RF electron cascade

Jacob Francis Chittock-Wood^{1,2}

^{1}University College London, ^{2}Quantum Motion

### W24

Control of threshold voltages in Si/SiGe quantum devices via optical illumination

Michael Wolfe^{1}

^{1}Department of Physics, University of Wisconsin-Madison, Madison, WI,
53706, USA

### W25

Investigating a 300 mm silicon quantum dots platform for scalable quantum information processing

Claude Rohrbacher^{1,2}

^{1}Université de Sherbrooke, ^{2}Institut Quantique

### W26

The Quantum Admittance of the Single-Electron Box

Giovanni Oakes^{1,2}

^{1}University of Cambridge, ^{2}Quantum Motion Technology

### W27

Consistency of high-fidelity two-qubit operations in silicon.

Tuomo Ilmari Tanttu^{1,2}

^{1}University of New South Wales, Australia, ^{2}Diraq, Sydney,
Australia

### W28

Classifying interdot tunneling in double quantum dots by excited-state spectroscopy

Yuan Kang^{1}

^{1}University of Science and Technology of China

### W29

Gate-biased illumination enables low voltage operation of Si/SiGe quantum dot devices

Jared Benson^{1}

^{1}University of Wisconsin-Madison

### W30

Spatio-temporal correlations of noise in MOS spin qubits

Amanda Seedhouse^{1,2}

^{1}UNSW Sydney, ^{2}Diraq

### W31

Two-qubit operation of synchronously driven spin qubits in a global field

Ingvild Hansen^{1,2}

^{1}The University of New South Wales, Sydney, NSW 2052, Australia,
^{2}Diraq, Sydney, NSW 2052, Australia

### W32

Quantum dot auto-tuning with neural networks: from simulation to real-world experiment

Dominique Drouin^{1,2,3}

^{1}3IT, ^{2}LN2, ^{3}IQ

### W33

Principled approach to automatically annotating experimental data

Justyna Zwolak^{1,2}

^{1}National Institute of Standards and Technology, ^{2}University of
Maryland

### W34

Quantum dot device screening at 1.2K

Tyler Kovach^{1}

^{1}University of Wisconsin Madison

### W35

Understanding the Physical Origin Limiting the Performance of Cryogenic MOSFETs: Critical Role of MOS Interface

Hiroshi Oka^{1}

^{1}AIST

### W36

The variability of CMOS electron spin qubits

Jesus David Cifuentes^{1,2}

^{1}University of New South Wales, Sydney, NSW, Australia., ^{2}Diraq,
Sydney, NSW, Australia.

### W37

Gate Electrode Induced Strain Modulations in Silicon Quantum Wells

Marvin Hartwig Zoellner^{1}

^{1}IHP Leibniz-Institut für innovative Mikroelektronik, Germany

### W38

Design investigations of devices and circuits for reflectometry-based defect assessment in Si quantum platforms

Keito Masuda^{1}

^{1}Nagoya University, Japan

### W39

Fabricating a many quantum dot device for atomic force microscopy electric charge detection

Kieran Jack Spruce^{1}

^{1}University College London

### W40

3D fabrication of Si:P devices using STM hydrogen resist lithography for scalable fault tolerant quantum computing.

Mitchell Kiczynski^{1,2}

^{1}University of New South Wales, ^{2}Silicon quantum computing Pty
Ltd

### W41

Germanium wafers for strained quantum wells with low disorder

Lucas Stehouwer^{1}

^{1}QuTech

### W42

Defect engineering for interface control of Si-qubit integrated layers

Satoru Miyamoto^{1}

^{1}Nagoya University

### W43

Experimental methods to implement shear strain to enhance valley splitting in Wiggle Wells

Emily Saige Joseph^{1}

^{1}University of Wisconsin-Madison

### W44

Scanning tunneling microscopy of buried dopants in silicon: images and their uncertainties

Michal Zielinski^{1}

^{1}Nicolaus Copernicus University

### W45

Moving Beyond Single Donor Placement for Silicon Quantum Devices

Jonathan Wyrick^{1}

^{1}NIST

### W46

Atomic engineering of molecular qubits for high-speed, high fidelity single qubit gates

Michael Thornbury Jones^{1,2}

^{1}Silicon Quantum Computing, UNSW Sydney, 2052, NSW, Australia,
^{2}Centre of Excellence for Quantum Computation and Communication Technology,
School of Physics, UNSW Sydney, 2052, NSW, Australia

### W47

Synchrotron radiation as a fabrication and characterisation tool for atomic-scale dopant devices

Neil J Curson^{1}

^{1}London Centre for Nanotechnology, UCL

### W48

Beyond nearest-neighbour spin coupling of donor qubits in silicon

Mushita Masud Munia^{1,2}

^{1}University of New South Wales, ^{2}Silicon Quantum Computing Pty
Ltd

### W49

Circuit Quantum Electrodynamics with Atomically Precise Qubits

Ashutosh Mukund Bhudia^{1}

^{1}ARC Centre of Excellence for Quantum Computation and Communication
Technology, School of Physics, UNSW Sydney, 2052, Australia

### W50

Unifying Admittance and Susceptibility in Quantum Dot Circuit QED

Lorenzo Peri^{1,2}

^{1}Quantum Motion, ^{2}University of Cambridge

### W51

Methods for spin-photon coupling in silicon quantum dots with intrinsic spin-orbit effect

Kevin Guo^{1}

^{1}University of New South Wales

### W52

Coupling between a Si/SiGe triple quantum dot and microwave resonator

Gang Cao^{1}

^{1}University of Science and Technology of China

### W53

Pulsed electron spin resonance protocols for storing microwave quantum states

Patricia Oehrl^{1,2}

^{1}Walther-Meissner-Institute, ^{2}Technical University of
Munich

### W54

Fast quasi-adiabatic detuning pulse for high-fidelity spin-to-charge conversion

Bill Coish^{1}

^{1}Department of Physics, McGill University, Montreal, QC, Canada

### W55

Optimization of silicon MOS architecture for self-referenced quantum current standard

Ajit Dash^{1}

^{1}School of Electrical Engineering and Telecommunications, University of New
South Wales, Sydney, NSW 2052, Australia

### W56

High-fidelity dispersive spin readout in a scalable unit cell of silicon quantum dots

Constance Lainé^{1,2}

^{1}University College London, ^{2}Quantum Motion

### W57

Towards an electro-optical readout for donor spin qubits in silicon-on-insulator substrates

Antti Johannes Kanniainen^{1}

^{1}University of Jyväskylä

### W58

Magnetic Field and Temperature Resilient Amplification and Noise Squeezing

Arjen Vaartjes^{1}

^{1}University of New South Wales

### W59

Advances in Dispersive Readout Methods for Spin Qubits

Dario Denora^{1,2}

^{1}UNSW, ^{2}ETH Zurich

### W60

Variability of Hole Spin Qubits in Germanium: Origin, Quantification and Implications

Biel Martinez^{1}

^{1}Université Grenoble Alpes, CEA-LETI

### W61

High-mobility, low-percolation density Ge/SiGe heterostructure for hole spin qubits applications

Leonardo Massai^{1}

^{1}IBM Research Europe

### W62

A depletion mode spin qubit in planar Ge at low magnetic fields

Jaime Saez-Mollejo^{1}

^{1}ISTA, Klosterneuburg, Austria

### W63

Interplay of Landau-Zener Interference and Electric Dipole Spin Resonance in Silicon Hole Qubits

Sayyid Irsyadul Ibad^{1}

^{1}Tokyo Institute of Technology

### W64

Magnetic field dependence of Pauli spin blockade in Planar Germanium

YuChen Zhou^{1}

^{1}Univ. Sci. Technol. China

### W65

Generation of realistic strain profile by atomistic simulation and its effect on the EDSR rate of hole spin qubits

Pratik Chowdhury^{1}

^{1}University of New South Wales (UNSW)

### W66

Hole spin qubit in an asymmetric quantum dot

Yun-Pil Shim^{1}

^{1}University of Texas at El Paso

### W67

Withdrawn

### W68

Creating a Simple and Affordable Quantum Demonstrator for Public Engagement

Nard Dumoulin Stuyck^{1,2}

^{1}UNSW, ^{2}Diraq

### W69

Withdrawn

### W70

Cryogenic CMOS for Local Qubit Control and Readout - A Path to Scaling

Patrick Vliex^{1}

^{1}Central Institute of Engineering, Electronics and Analytics – Electronic
Systems (ZEA-2), Forschungszentrum Jülich GmbH

### W71

A cryogenic packaging technique using a flip-chip Si-interposer toward a large-scale qubit implementation

Misato Taguchi^{1}

^{1}Kobe Univ.

### W72

Advanced spin-qubit control and readout with full-stack electronics

Tahereh Niknejad^{1}

^{1}Qblox

### W73

Proposal of a microwave signal evaluation method for high-fidelity cryogenic control

Ryutaro Matsuoka^{1}

^{1}Tokyo Institute of Technology

### W74

Withdrawn

### W75

Coupling superconducting flux qubits to impurities in silicon

Michael Stern^{1}

^{1}Bar Ilan University

### W76

Development of silicon spin qubit back-end for Quantum Inspire

Nodar Samkharadze^{1,2}

^{1}Qutech Advanced Research Center, ^{2}TNO

### W77

Fabrication and characterization of multiple qubit devices

Akito Noiri^{1}

^{1}Riken

### W78

Qubits on the move: exploration of a 10-quantum dot array

Valentin John^{1}

^{1}QuTech and Kavli Institute of Nanoscience, Delft University of Technology,
The Netherlands

### W79

A computing architecture using shutting-qubit for a Si qubit array

Tomonori Sekiguchi^{1}

^{1}Hitachi, Ltd.